
Knapsack Backtracking Recursive

February 19, 2025

[1]: from random import randint

capacity = 10
items are (weight, value)
items = [(8,13),(3,7),(5,10),(5,10),(2,1),(2,1),(2,1)]

#capacity = 23
#items = [(randint(5,20),randint(5,20)) for _ in range(200)]

[2]: # to help you write recursive functions, always plan out
SUPER explicitly what the inputs and outputs are
input:
items_left: list of remaining items to choose from
(at the start, all items are remaining)
capacity_left: remaining capacity
output:
the best solution (as a list of 2-tuples) using just
"items_left" with capacity <= "capacity_left"
def solve(items_left, capacity_left):

return the set of items in the best solution
#print("just got called with",(items_left, capacity_left))

#if not items_left:
if len(items_left) == 0:

return []

item = (weight, value)
first_item_weight = items_left[0][0]

sol_without_item = solve(items_left[1:], capacity_left)

if we have room for the first item, add it and recursively solve
if first_item_weight <= capacity_left:

find the best solution that USES the first item
sol_with_item = [items_left[0]] + solve(items_left[1:], capacity_left -␣

↪first_item_weight)
else:

1

if not, then only possible solution is exclusing the item
prune
#print("about to return", sol_without_item)
return sol_without_item

compare sol_with and sol_without, and return the best
score_with = sum(item[1] for item in sol_with_item)
score_without = sum(item[1] for item in sol_without_item)

if score_with > score_without:
#print("about to return", sol_with_item)
return sol_with_item

#print("about to return", sol_without_item)
return sol_without_item

items = [(8,13),(3,7),(5,10)]

solve([(8,13),(3,7),(5,10)], 10)
--> solve([(3,7),(5,10)], 10) # best solution without (8,13)

--> solve([(5,10)], 10)
solve([(5,10)], 7)

vs
solve([(3,7),(5,10)], 2) # best solution with (8,13)

[3]: print(items)
print(capacity)
solve(items, capacity)

[(8, 13), (3, 7), (5, 10), (5, 10), (2, 1), (2, 1), (2, 1)]
10

[3]: [(5, 10), (5, 10)]

[4]: capacity = 20
items = [(randint(5,20),randint(5,20)) for _ in range(200)]

[5]: solve(items, capacity)

[5]: [(5, 19), (5, 17), (5, 18), (5, 17)]

[]:

[]:

2

